頻譜分析儀是研究電信號頻譜結構的儀器,用于信號失真度、調制度、譜純度、頻率穩定度和交調失真等信號參數的測量,可用以測量放大器和濾波器等電路系統的某些參數,是一種多用途的電子測量儀器。它又可稱為頻域示波器、跟蹤示波器、分析示波器、諧波分析器、頻率特性分析儀或傅里葉分析儀等。現代
頻譜分析儀能以模擬方式或數字方式顯示分析結果,能分析1赫以下的甚低頻到亞毫米波段的全部無線電頻段的電信號。儀器內部若采用數字電路和微處理器,具有存儲和運算功能;配置標準接口,就容易構成自動測試系統。
在實驗室和車間常用的信號測試儀器是電子示波器。人的思維對時間概念比較敏感,每時每刻都與時域事件發生聯系,但是信號往往以頻率形式出現,用示波器觀察簡單的調幅載波信號也不方便,往往顯示載波時看不清調制儀,屏幕上獲得的是三條譜線,即載頻和在載頻左右的調制頻。調制方式越復雜,電子示波器越難顯示,頻譜分析器的表達能力強,頻譜分析儀是名副其實的頻域儀器的代表。溝通時間一頻率的數字表達方法就是傅里葉變換,它把時間信號分解成正弦和余弦曲線的疊加,完成信號由時間域轉換到頻率域的過程。
早期的頻譜分析儀實質上是一臺掃頻接收機,輸入信號與本地振蕩信號在混頻器變頻后,經過一組并聯的不同中心頻率的帶通濾波器,使輸入信號顯示在一組帶通濾波器限定的頻率軸上。顯然,由于帶通濾波器由無源元件構成,頻譜分析器整體上顯得很笨重,而且頻率分辨率不高。既然傅里葉變換可把輸入信號分解成分立的頻率分量,同樣可起著濾波器類似的作用,借助快速傅里葉變換電路代替低通濾波器,使頻譜分析儀的構成簡化,分辨率增高,測量時間縮短,掃頻范圍擴大,這就是現代頻譜分析儀的優點了。
矢量信號分析儀是在預定頻率范圍內自動測量電路增益與相應的儀器,它有內部的掃頻頻率源或可控制的外部信號源。其功能是測量對輸入該掃頻信號的被測電路的增益與相位,因而它的電路結構與頻譜分析儀相似。頻譜分析儀需要測量未知的和任意的輸入頻率,矢量信號分析儀則只測量自身的或受控的已知頻率;頻譜分析儀只測量輸入信號的幅度(標量儀器),矢量信號分析儀則測量輸入信號的幅度和相位(矢量儀器)。由此可見,矢量信號分析儀的電路結構比頻譜分析儀復雜,價位也較高。現代的矢量信號分析儀也采用快速傅里葉變換,以下介紹它們的異同。
頻譜分析儀和FFT頻譜分析儀
傳統的頻譜分析儀的電路是在一定帶寬內可調諧的接收機,輸入信號經下變頻后由低通濾器輸出,濾波輸出作為垂直分量,頻率作為水平分量,在示波器屏幕上繪出坐標圖,就是輸入信號的頻譜圖。由于變頻器可以達到很寬的頻率,例如30HZ- 30GHZ,與外部混頻器配合,可擴展到100GHz以上,頻譜分析儀是頻率覆蓋寬的測量儀器之一。無論測量連續信號或調制信號,頻譜分析器都是很理想的測量工具。
但是,傳統的頻譜分析儀也有明顯的缺點。首先,它只適于測量穩態信號,不適宜測量瞬態事件;第二,它只能測量頻率的幅度,缺少相位信息,因此屬于標量儀器而不是矢量儀器;第三,它需要多種低頻帶通濾波器,獲得的測量結果要花費較長的時間,因此被視為非實時儀器。
既然通過傅里葉運算可以將被測信號分解成分立的頻率分量,達到與傳統頻譜分析儀同樣的結果,出現基于快速傅里葉變換(FFT)的頻譜分析儀。這種新型的頻譜分析儀采用數字方法直接由模擬/數字轉換器(ADC)對輸入信號取樣,再經FFT處理后獲得頻譜分布圖。據此可知,這種頻譜分析儀亦稱為實時頻譜分析儀,它的頻率范圍受到ADC采集速率和FFT運算速度的限制。